National Repository of Grey Literature 47 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Study of DNA-doxorubicine interaction by electrochemical methods on nanostructured electrodes
Přibyl, Jakub ; Fohlerová, Zdenka (referee) ; Kynclová, Hana (advisor)
Cancer diseases are one of the leading causes of mortality worldwide, for this reason, great attention anticancer drugs. Doxorubicin falls into the category of the most widely used cancer drugs. The method of electrochemical impedance spectroscopy were investigated properties of golds electrodes without deposit nanoparticles and electrodes with deposit gold nanoparticles. Using voltammetric measurements we detected doxorubicin and investigated the interaction of doxorubicin with oligonucleotides on gold electrodes without nanoparticles and electrodes modified with gold nanoparticles.
Study of intercalation and covalent bond of doxorubicin into deoxyribonucleic acid using voltammetry and impedance spectroscopy
Kynclová, Hana ; Trnková, Libuše (referee) ; Hubálek, Jaromír (advisor)
Doxorubicine is one of the most used anticancer medicaments nowadays. Improvement of Electrochemical Impedance Spectroscopy and cyclic voltammetry was investigated influence of doxorubicine to sensitive cells and resistibility cells.
Influence of natural polyphenolic substances on p53 protein expression
Bušanski, Patrik ; Němcová, Andrea (referee) ; Brázda, Václav (advisor)
The tumor suppressor protein p53 is one of the major regulators of the cell cycle after DNA damage. In addition to stopping the cycle and repairing DNA, it can, in extreme cases, induce programmed cell death - apoptosis. Mutations in the gene encoding p53 are present in more than 50% of cancer cases. This thesis examines alternative natural polyphenolic substances that could increase the level and expression of p53 protein in tumor cells. These substances could be an alternative to non-specific cytostatics, which bring many undesirable additional effects during treatment. In the theoretical part of the thesis the structure and properties of the p53 protein and describes alternative therapeutic approaches with a focus on polyphenolic substances is explained. The aim of the experimental part was to determine the effect of curcumin and resveratrol in comparison with often used cytostatic drug, doxorubicin, on cell viability of tumor cells and on p53 protein levels. The effect of these substances on the binding of p53 to DNA in yeast systems was also examined. It was found that doxorubin efficiency is many times higher than the examined polyphenolic agents, but resveratrol was showing some potential as a suitable alternative in the treatment of tumors, thanks to the ability to activate apotosis. It was clearly demonstrated that there is an association between induced programmed death and increased p53 protein expression after resveratrol treatment.
Raman spectroscopy of biologically active species and antitumor drugs
Třeštíková, Liběna ; Vetterl,, Vladimír (referee) ; Vrána, Oldřich (advisor)
SERRS spektra of biological materials are very komplex, because they consist of signals from all molecules present in cells. In this text are presented SERRS spektra of antitumor drugs and its komplex with DNA. Experimental are rated on doxorubicin and another antitumor druha and on study of theirs potential by treatment for tumors. Doxorubicin belong to clase antracycline antibiotics and is used for stop of tumor cells reproduction. Scientists found still new ways, new drugs. SERRS is one of possibilities for study of this drugs and theirs interaction with DNA.
Study of disassembly/reassembly mechanisms of ferritin protein cages and their utilization in nanomedicine
Krausová, Kateřina ; Fohlerová, Zdenka (referee) ; Heger, Zbyněk (advisor)
Diploma thesis deals with the study of dissociation and reassociation of ferritin protein cages and their use in nanomedicine. Most studies that are focused on targeted transport of pharmaceuticals using ferritin cages work with horse spleen ferritin. It is, however, its origin, which leads to increasingly frequent questions about possible immunogenicity in the patient's organism, which also provides the main motivation to test the possibility of encapsulation of low-molecular drugs into ferritins originating from alternative organisms. In the practical part the method for the study of dissociation was experimentally designed. Native polyacrylamide gel electrophoresis was used to study dissociation of equine ferritin composed of different subunit, human ferritin, and archeal Pyrococcus furiosus ferritin. The obtained subunit dissociation results were used to encapsulate the low molecular chemotherapeutic drug doxorubicin and for further characterization of the ferritin-doxorubicin complex. The efficacy of the designed nanoformulations has been verified in the treatment of malignant breast cancer. Human ferritin proves to be the optimal one. Its composition of heavy subunits corresponds to a lower protein stability, thus a more efficient opening of the structure and consequent encapsulation of the cytostatics occurs. With its 60% encapsulation efficiency of doxorubicin, low polydispersity index, effective cytotoxicity of ferritin-doxorubicin complex and minimal risk of immune response to the patient's organism, human ferritin achieves better results than commonly used horse spleen ferritin.
Study of expression of transferrin receptors (TfR1) and their utilization in nanomedicine
Krausová, Kateřina ; Fohlerová, Zdenka (referee) ; Heger,, Zbyněk (advisor)
Bachelor thesis deals with the expression of the transferrin receptor (TfR1) and its use in nanomedicine. During the last decade, nanotechnology emerged as one of the central milestones in connecting all scientific and technological disciplines. Nanomedicine already demonstrated efficacy not only in animal models of cancer but also in clinical practice. The theoretical part is not only aimed at cancer of the human population, but also at the possibilities of targeted drug delivery into the tumor tissue, which greatly reduces the otherwise serious side effects of conventional treatment – systemic toxicity. The practical part is focused on optimization for studying the expression of the transferrin receptor, a protein overexpressed by neoplastic cells aiming to enrich the higher metabolic needs of tumor cells. The optimal conditions were as follows: lysate of 50 000 cells applied with nonreducing nondenaturing buffer and the concentration of the primary antibody of 1.0 𝜇g/ml. Different levels of TfR1 expression were detected, depending on the type of tumor cells. The cell lines of neuroblastoma, prostate cancer (occurence in every 7th man) and breast cancer (occurence in every 8th woman) were selected for the next experiments. Via this transferrin receptor, apoferritin, which is a protein storaging iron ions in many organisms, can be internalized into cells. Artificially, the internal cavity of apoferritin may be used for encapsulation and transport of any molecules. In the case of this bachelor thesis, the apoferritin was used for delivery of doxorubicin. Doxorubicin has been used for cancer treatment for more than 30 years; however, its administered dose is limited by its high toxicity. This can be reduced by its encapsulation in a suitable vector for targeted transport to the tumor cells only. Apoferritin could serve as such suitable vector. In this thesis, the suitable usage of apoferritin as a nanocarrier for chemotherapeutic delivery was confirmed. Its molecule size of 10-12 nm allows it to employ the effect of increased permeability and retention. At the same time, this size makes it possible to avoid renal clearance. The properties of encapsulated doxorubicin are not affected by apoferritin, thus preserving its toxicity for cells with a high level of TfR1 expression (30% growth inhibition of these cells after 24 h of treatment).
The study of properties of anticancer drugs ellipticine, etoposide and doxorubicin in the forms of nanocarriers
Lengálová, Alžběta ; Stiborová, Marie (advisor) ; Martínková, Markéta (referee)
Currently available anticancer therapies are inadequate and spur demand for improved technologies. Among others, the utilization of nanocarriers for anticancer drug delivery has shown great potential in cancer treatment. Nanocarriers can improve the therapeutic efficiency of the drugs with minimization of the undesirable side effects. To evaluate potential application of this technology, two forms of nanocarriers have been studied: multi-walled carbon nanotubes (MWCNTs) and apoferritin. The aim of this study was to determine, whether given cytostatics (ellipticine, etoposide and doxorubicin) are bound to these nanotransporters and how are they released from them, especially depending on pH. Since the pH of the tumor cells is lower than the pH of healthy cells it would be preferred that the drugs would release from nanocarriers at the lower pH while at the physiological pH the release of the drug would be eliminated. The results found show that ellipticine is actually released from its MWCNT- and apoferrtin-encapsulated form at acidic pH (5.0), while at pH 7.4 its interaction with nanocarriers is stable. Ellipticine released from MWCNT is activated by microsomal enzymes to reactive metabolites (13- hydroxyellipticine and 12-hydroxyellipticine) forming DNA adducts. The results indicate that both...
The comparison of properties of cell lines resistant to ellipticine, doxorubicin, and cisplatin
Černá, Tereza ; Poljaková, Jitka (advisor) ; Eckschlager, Tomáš (referee)
7 Abstract Neuroblastoma is the most common extracranial solid tumor of childhood. Despite advances in cancer diagnosis and therapy, the treatment of some forms of neuroblastoma is still complicated. One of the major complications of the chemotherapy is a developed drug resistance. This master thesis deals with the effect of cytostatics on protein and gene expression of selected proteins, which may contribute to chemoresistance of the human neuroblastoma cell line UKF-NB-4. The sensitive line UKF-NB-4 and the resistant line UKF-NB-4CDDP , UKF-NB-4DOXO and UKF-NB-4ELLI were exposed to cisplatin, doxorubicin, ellipticine for 24, 48 and 72 hours. The Western blot analysis showed that cytostatic agents cisplatin, doxorubicin or ellipticine added to the sensitive neuroblastoma cell line UKF-NB-4 in amounts which are added to resistant neuroblastoma cell lines in order to maintain resistance induced expression of p53 and reduced expression of retinoblastoma protein pRb after 72 hours of cultivation. Differences in the expression of RAS protein, cytochrome P450 1A1, 3A4 and cytochrome b5 has not been shown. Changes in the expression of the studied proteins in resistant lines UKF-NB-4CDDP , UKF-NB-4DOXO and UKF-NB-4ELLI cultured with and without cytostatic agents were not detected by the Western blot analysis....
Depletion of Treg cells for potentiation of cancer treatment with HPMA copolymer-bound cytostatic drug conjugates"
Dvořáková, Barbora ; Kovář, Marek (advisor) ; Reiniš, Milan (referee)
Tumor diseases are severe problem worldwide with increasing number of patients suffering from various types of malignancies. Many of approved therapeutics cause serious side toxicities. Therefore, there are intensive efforts to improve cancer treatment protocols. The aim of this study was to deplete regulatory T (Treg) cells without affecting other immunocompetent cells playing a positive role in tumor eradication. Treg cells were reported to hamper anti-tumor immunity and promote tumor growth and survival. Thus, their selective elimination could lead to induction of anti-tumor responses and tumor rejection if combined with chemotherapy with selected N-(2- hydroxypropyl)methacrylamide (HPMA) copolymer-bound drug conjugates. Original approach was to deplete of Treg cells without the use of anti-CD25 mAb that has been widely exploited for Treg cell elimination; however, its long-term persistence in circulation together with inhibitory effect on activated effector cells (CD25+ ) are its main disadvantages. Thus, Treg cells were sensitized to cell cycle-specific cytostatic drugs via application of IL-2/anti-IL-2 JES6.1 mAb immunocomplexes that induce vigorous selective proliferation of this cell population. Subsequent application of cell cycle-specific cytostatics showed steep decrease of Treg cell...
Influence of natural polyphenolic substances on p53 protein expression
Bušanski, Patrik ; Němcová, Andrea (referee) ; Brázda, Václav (advisor)
The tumor suppressor protein p53 is one of the major regulators of the cell cycle after DNA damage. In addition to stopping the cycle and repairing DNA, it can, in extreme cases, induce programmed cell death - apoptosis. Mutations in the gene encoding p53 are present in more than 50% of cancer cases. This thesis examines alternative natural polyphenolic substances that could increase the level and expression of p53 protein in tumor cells. These substances could be an alternative to non-specific cytostatics, which bring many undesirable additional effects during treatment. In the theoretical part of the thesis the structure and properties of the p53 protein and describes alternative therapeutic approaches with a focus on polyphenolic substances is explained. The aim of the experimental part was to determine the effect of curcumin and resveratrol in comparison with often used cytostatic drug, doxorubicin, on cell viability of tumor cells and on p53 protein levels. The effect of these substances on the binding of p53 to DNA in yeast systems was also examined. It was found that doxorubin efficiency is many times higher than the examined polyphenolic agents, but resveratrol was showing some potential as a suitable alternative in the treatment of tumors, thanks to the ability to activate apotosis. It was clearly demonstrated that there is an association between induced programmed death and increased p53 protein expression after resveratrol treatment.

National Repository of Grey Literature : 47 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.